We recommend all candidates write in two to three sentences for each objective, and check them off as they go.

CompTIA Network+ Exam Objectives - N10-009

1.0 Networking Fundamentals

1.1 Explain concepts related to the Open Systems Interconnection (OSI) reference model.

- OSI Model
 - Layer 1 Physical
 - Layer 2 Data link
 - Layer 3 Network
 - Layer 4 Transport
 - Layer 5 Session
 - Layer 6 Presentation
 - Layer 7 Application

1.2 Compare and contrast networking appliances, applications, and functions.

- Physical and virtual appliances
 - - Router
 - Switch
 - - Firewall
 - - Intrusion detection system (IDS)/intrusion prevention system (IPS)
 - Load balancer
 - - Proxy
 - - Network-attached storage (NAS)
 - - Storage area network (SAN)
- - Wireless
 - o Access point (AP)
 - o Controller
- Applications
 - - Content delivery network (CDN)
- Functions
 - - Virtual private network (VPN)
 - - Quality of service (QoS)
 - - Time to live (TTL)

1.3 Summarize cloud concepts and connectivity options.

We recommend all candidates write in two to three sentences for each objective, and check them off as they go.

- Network functions virtualization
- (NFV)
- • Virtual private cloud (VPC)
- • Network security groups
- • Network security lists
- • Cloud gateways
 - - Internet gateway
 - - Network address translation (NAT) gateway
- • Cloud connectivity options
 - - VPN
 - - Direct Connect
- Deployment models
 - - Public
 - - Private
 - - Hybrid
- Service models
 - - Software as a service (SaaS)
 - - Infrastructure as a service (IaaS)
 - - Platform as a service (PaaS)
- Scalability
- Elasticity
- • Multitenancy

1.4 Explain common networking ports, protocols, services, and traffic types.

- Protocols Ports
 - File Transfer Protocol (FTP) 20/21
 - Secure File Transfer Protocol (SFTP) 22
 - Secure Shell (SSH) 22
 - Telnet 23
 - Simple Mail Transfer Protocol (SMTP) 25
 - Domain Name System (DNS) 53
 - Dynamic Host Configuration Protocol (DHCP) 67/68
 - Trivial File Transfer Protocol (TFTP) 69
 - Hypertext Transfer Protocol (HTTP) 80
 - Network Time Protocol (NTP) 123
 - Simple Network Management Protocol (SNMP) 161/162
 - Lightweight Directory Access Protocol (LDAP) 389
 - Hypertext Transfer Protocol Secure (HTTPS) 443

We recommend all candidates write in two to three sentences for each objective, and check them off as they go.

- Server Message Block (SMB) 445
- Syslog 514
- Simple Mail Transfer Protocol Secure (SMTPS) 587
- Lightweight Directory Access Protocol over SSL (LDAPS) 636
- Structured Query Language (SQL) Server 1433
- Remote Desktop Protocol (RDP) 3389
- Session Initiation Protocol (SIP) 5060/5061
- • Internet Protocol (IP) types
 - - Internet Control Message Protocol (ICMP)
 - - Transmission Control Protocol (TCP)
 - - User Datagram Protocol (UDP)
 - - Generic Routing Encapsulation (GRE)
 - - Internet Protocol Security (IPSec)
 - o Authentication Header (AH)
 - o Encapsulating Security Payload (ESP)
 - o Internet Key Exchange (IKE)
- • Traffic types
 - Unicast
 - Multicast
 - Anycast
 - Broadcast

1.5 Compare and contrast transmission media and transceivers.

- • Wireless
 - - 802.11 standards
 - Cellular
 - - Satellite
- Wired
 - - 802.3 standards
 - - Single-mode vs. multimode fiber
 - - Direct attach copper (DAC) cable
 - o Twinaxial cable
 - Coaxial cable
 - - Cable speeds
 - - Plenum vs. non-plenum cable
- • Transceivers
 - Protocol
 - o Ethernet

We recommend all candidates write in two to three sentences for each objective, and check them off as they go.

- o Fibre Channel (FC)
- Form factors
 - o Small form-factor pluggable (SFP)
 - o Quad small form-factor pluggable (QSFP)
- Connector types
 - - Subscriber connector (SC)
 - - Local connector (LC)
 - - Straight tip (ST)
 - - Multi-fiber push on (MPO)
 - - Registered jack (RJ)11
 - - RJ45
 - F-type
 - - Bayonet Neill–Concelman (BNC)

1.6 Compare and contrast network topologies, architectures, and types.

- Mesh
- • Hybrid
- • Star/hub and spoke
- • Spine and leaf
- • Point to point
- • Three-tier hierarchical model
 - - Core
 - - Distribution
 - - Access
- Collapsed core
- • Traffic flows
 - - North-south
 - East-west

1.7 Given a scenario, use appropriate IPv4 network addressing.

- Public vs. private
 - - Automatic Private IP Addressing (APIPA)
 - - RFC1918
 - - Loopback/localhost
- • Subnetting
 - - Variable Length Subnet Mask (VLSM)
 - - Classless Inter-domain Routing (CIDR)
- • IPv4 address classes

We recommend all candidates write in two to three sentences for each objective, and check them off as they go.

- - Class A
- - Class B
- - Class C
- Class D
- - Class E

1.8 Summarize evolving use cases for modern network environments.

- Software-defined network (SDN) and software-defined wide area network (SD-WAN)
 - - Application aware
 - - Zero-touch provisioning
 - - Transport agnostic
 - - Central policy management
- • Virtual Extensible Local Area Network (VXLAN)
 - - Data center interconnect (DCI)
 - - Layer 2 encapsulation
- • Zero trust architecture (ZTA)
 - - Policy-based authentication
 - Authorization
 - - Least privilege access
- • Secure Access Secure Edge (SASE)/Security Service Edge (SSE)
- Infrastructure as code (IaC)
 - Automation
 - o Playbooks/templates/reusable tasks
 - o Configuration drift/compliance
 - o Upgrades
 - o Dynamic inventories
 - Source control
 - o Version control
 - o Central repository
 - o Conflict identification
 - o Branching
- • IPv6 addressing
 - - Mitigating address exhaustion
 - - Compatibility requirements
 - o Tunneling
 - o Dual stack
 - o NAT64

2.0 Network Implementation

We recommend all candidates write in two to three sentences for each objective, and check them off as they go.

2.1 Explain characteristics of routing technologies.

- Static routing
- • Dynamic routing
 - - Border Gateway Protocol (BGP)
 - - Enhanced Interior Gateway Routing Protocol (EIGRP)
 - - Open Shortest Path First (OSPF)
- Route selection
 - - Administrative distance
 - - Prefix length
 - - Metric
- • Address translation
 - - NAT
 - - Port address translation (PAT)
- • First Hop Redundancy Protocol (FHRP)
- • Virtual IP (VIP)
- • Subinterfaces

2.2 Given a scenario, configure switching technologies and features.

- Virtual Local Area Network (VLAN)
 - - VLAN database
 - - Switch Virtual Interface (SVI)
- • Interface configuration
 - - Native VLAN
 - - Voice VLAN
 - - 802.1Q tagging
 - - Link aggregation
 - Speed
 - - Duplex
- • Spanning tree
- • Maximum transmission unit (MTU)
 - - Jumbo frames

2.3 Given a scenario, select and configure wireless devices and Technologies.

- Channels
 - - Channel width
 - - Non-overlapping channels
 - - Regulatory impacts

We recommend all candidates write in two to three sentences for each objective, and check them off as they go.

- o 802.11h
- • Frequency options
 - - 2.4GHz
 - - 5GHz
 - - 6GHz
 - - Band steering
- • Service set identifier (SSID)
 - - Basic service set identifier (BSSID)
 - - Extended service set identifier (ESSID)
- • Network types
 - - Mesh networks
 - - Ad hoc
 - - Point to point
 - - Infrastructure
- Encryption
 - - Wi-Fi Protected Access 2 (WPA2)
 - - WPA3
- Guest networks
 - - Captive portals
- • Authentication
 - - Pre-shared key (PSK) vs. Enterprise
- Antennas
 - - Omnidirectional vs. directional
- • Autonomous vs. lightweight access point

2.4 Explain important factors of physical installations.

- Important installation implications
 - Locations
 - o Intermediate distribution frame (IDF)
 - o Main distribution frame (MDF)
- Rack size
- - Port-side exhaust/intake
- - Cabling
 - o Patch panel
 - o Fiber distribution panel
- - Lockable
- • Power
 - - Uninterruptible power supply (UPS)
 - - Power distribution unit (PDU)

We recommend all candidates write in two to three sentences for each objective, and check them off as they go.

- - Power load
- - Voltage
- • Environmental factors
 - - Humidity
 - - Fire suppression
 - - Temperature

3.0 Network Operations

3.1 Explain the purpose of organizational processes and procedures

- Documentation
- - Physical vs. logical diagrams
- - Rack diagrams
- - Cable maps and diagrams
- - Network diagrams
 - o Layer 1
 - o Layer 2
 - o Layer 3
- - Asset inventory
 - o Hardware
 - o Software
 - o Licensing
 - o Warranty support
- - IP address management (IPAM)
- - Service-level agreement (SLA)
- - Wireless survey/heat map
- • Life-cycle management
 - - End-of-life (EOL)
 - - End-of-support (EOS)
 - - Software management
 - o Patches and bug fixes
 - o Operating system (OS)
 - o Firmware
- Decommissioning
- • Change management
 - - Request process tracking/service request

We recommend all candidates write in two to three sentences for each objective, and check them off as they go.

- • Configuration management
 - - Production configuration
 - - Backup configuration
 - - Baseline/golden configuration

3.2 Given a scenario, use network monitoring technologies

- Methods
 - - SNMP
 - o Traps
 - o Management information base (MIB)
 - o Versions
 - o v2c
 - o v3
 - o Community strings
 - o Authentication
- - Flow data
- - Packet capture
- Baseline metrics
 - o Anomaly alerting/notification
- Log aggregation
 - o Syslog collector
 - o Security information and event management (SIEM)
- - Application programming interface (API) integration
- - Port mirroring
- Solutions
 - - Network discovery
 - o Ad hoc
 - o Scheduled
 - - Traffic analysis
 - - Performance monitoring
 - - Availability monitoring
 - - Configuration monitoring

3.3 Explain disaster recovery (DR) concepts

- DR metrics
 - - Recovery point objective (RPO)
 - - Recovery time objective (RTO)
 - - Mean time to repair (MTTR)

We recommend all candidates write in two to three sentences for each objective, and check them off as they go.

- - Mean time between failures (MTBF)
- DR sites
 - Cold site
 - - Warm site
 - - Hot site
- • High-availability approaches
 - Active-active
 - - Active-passive
- Testing
 - - Tabletop exercises
 - Validation tests

3.4 Given a scenario, implement IPv4 and IPv6 network services

- Dynamic addressing
 - - DHCP
 - o Reservations
 - o Scope
 - o Lease time
 - o Options
 - o Relay/IP helper
 - o Exclusions
 - - Stateless address autoconfiguration (SLAAC)
- Name resolution
 - DNS
 - o Domain Name Security Extensions (DNSSEC)
 - o DNS over HTTPS (DoH) and DNS over TLS (DoT)
 - o Record types
 - o Address (A)
 - o AAAA
 - o Canonical name (CNAME)
 - o Mail exchange (MX)
 - o Text (TXT)
 - o Nameserver (NS)
 - o Pointer (PTR)
 - o Zone types
 - o Forward
 - o Reverse
 - o Authoritative vs. non-authoritative
 - o Primary vs. secondary

We recommend all candidates write in two to three sentences for each objective, and check them off as they go.

- o Recursive
- - Hosts file
- • Time protocols
 - - NTP
 - - Precision Time Protocol (PTP)
 - - Network Time Security (NTS)

3.5 Compare and contrast network access management methods

- • Site-to-site VPN
- Client-to-site VPN
 - - Clientless
 - - Split tunnel vs. full tunnel
- • Connection methods
 - SSH
 - - Graphical user interface (GUI)
 - API
 - - Console
- • Jump box/host
- In-band vs. out-of-band management

4.0 Network Security

4.1 Explain the importance of basic network security concepts.

- Logical security
 - - Encryption
- o Data in transit
- o Data at rest
 - Certificates
- o Public key infrastructure (PKI)
- o Self-signed
 - - Identity and access management (IAM)
- o Authentication
 - o Multifactor authentication (MFA)
 - o Single sign-on (SSO)
 - o Remote Authentication Dial-in User Service (RADIUS)
 - o LDAP
 - o Security Assertion Markup Language (SAML)
 - o Terminal Access Controller Access Control System Plus (TACACS+)

We recommend all candidates write in two to three sentences for each objective, and check them off as they go.

- o Time-based authentication
- o Authorization
 - o Least privilege
 - o Role-based access control
- - Geofencing
- • Physical security
 - - Camera
 - - Locks
- • Deception technologies
 - - Honeypot
 - - Honeynet
- • Common security terminology
 - - Risk
 - - Vulnerability
 - Exploit
 - - Threat
 - - Confidentiality, Integrity, and Availability (CIA) triad
- • Audits and regulatory compliance
 - - Data locality
 - - Payment Card Industry Data Security Standards (PCI DSS)
 - - General Data Protection Regulation (GDPR)
- • Network segmentation enforcement
 - - Internet of Things (IoT) and Industrial Internet of Things (IIoT)
 - Supervisory control and data acquisition (SCADA), industrial control System (ICS), operational technology (OT)
- - Guest
- - Bring your own device (BYOD)

4.2 Summarize various types of attacks and their impact to the network

- Denial-of-service (DoS)/
- distributed denial-of-service
- (DDoS)
- • VLAN hopping
- • Media Access Control (MAC)

We recommend all candidates write in two to three sentences for each objective, and check them off as they go.

- flooding
- Address Resolution Protocol
- (ARP) poisoning
- • ARP spoofing
- • DNS poisoning
- • DNS spoofing
- • Rogue devices and services
 - - DHCP
 - - AP
- • Evil twin
- • On-path attack
- • Social engineering
 - - Phishing
 - Dumpster diving
 - - Shoulder surfing
 - - Tailgating
- • Malware

4.3 Given a scenario, apply network security features, defense techniques, and solutions.

- Device hardening
 - - Disable unused ports and Services
 - - Change default passwords
- • Network access control (NAC)
 - - Port security
 - - 802.1X
 - - MAC filtering
- • Key management
- • Security rules
 - - Access control list (ACL)
 - - Uniform Resource Locator (URL) filtering
 - - Content filtering
- • Zones
 - - Trusted vs. untrusted
 - - Screened subnet

We recommend all candidates write in two to three sentences for each objective, and check them off as they go.

5.0 Network Security

5.1 Explain the troubleshooting methodology

- • Identify the problem
 - - Gather information
 - - Question users
 - - Identify symptoms
 - - Determine if anything has changed
 - - Duplicate the problem, if possible
 - - Approach multiple problems individually
- • Establish a theory of probable cause
 - - Question the obvious
 - - Consider multiple approaches
 - o Top-to-bottom/bottom-to-top OSI model
 - o Divide and conquer
- • Test the theory to determine the cause
 - - If theory is confirmed, determine next steps to resolve problem
 - - If theory is not confirmed, establish a new theory or escalate
- • Establish a plan of action to resolve the problem and identify potential effects
- Implement the solution or escalate as necessary
- • Verify full system functionality and implement preventive measures if applicable
- • Document findings, actions, outcomes, and lessons learned throughout the process

5.2 Given a scenario, troubleshoot common cabling and physical interface issues.

- Cable issues
 - Incorrect cable
 - o Single mode vs. multimode
 - o Category 5/6/7/8
 - o Shielded twisted pair (STP) vs. unshielded twisted pair (UTP)
 - - Signal degradation
 - o Crosstalk
 - o Interference
 - o Attenuation
 - - Improper termination
 - - Transmitter (TX)/Receiver (RX) transposed
- • Interface issues
 - - Increasing interface counters

We recommend all candidates write in two to three sentences for each objective, and check them off as they go.

- o Cyclic redundancy check (CRC)
- o Runts
- o Giants
- o Drops
- Port status
 - o Error disabled
 - o Administratively down
 - o Suspended
- • Hardware issues
 - - Power over Ethernet (PoE)
 - o Power budget exceeded
 - o Incorrect standard
 - - Transceivers
 - o Mismatch
 - o Signal strength

5.3 Given a scenario, troubleshoot common issues with network services.

- Switching issues
 - - STP
 - o Network loops
 - o Root bridge selection
 - o Port roles
 - o Port states
 - - Incorrect VLAN assignment
 - - ACLs
- Route selection
 - - Routing table
 - - Default routes
- • Address pool exhaustion
- Incorrect default gateway
- Incorrect IP address
 - - Duplicate IP address
- • Incorrect subnet mask

5.4 Given a scenario, troubleshoot common performance issues.

- Congestion/contention
- • Bottlenecking
- • Bandwidth

We recommend all candidates write in two to three sentences for each objective, and check them off as they go.

- - Throughput capacity
- • Latency
- Packet loss
- • Jitter
- • Wireless
 - - Interference
 - o Channel overlap
- - Signal degradation or loss
- - Insufficient wireless coverage
- - Client disassociation issues
- - Roaming misconfiguration

5.5 Given a scenario, use the appropriate tool or protocol to solve networking issues

- Software tools
 - - Protocol analyzer
 - - Command line
 - o ping
 - o traceroute/tracert
 - o nslookup
 - o tcpdump
 - o dig
 - o netstat
 - o ip/ifconfig/ipconfig
 - o arp
 - - Nmap
 - - Link Layer Discovery Protocol (LLDP)/Cisco Discovery Protocol (CDP)
 - Speed tester
- • Hardware tools
 - - Toner
 - Cable tester
 - - Taps
 - - Wi-Fi analyzer
 - Visual fault locator
- • Basic networking device commands
 - - show mac-address-table
 - - show route
 - - show interface
 - - show config

We recommend all candidates write in two to three sentences for each objective, and check them off as they go.

- - show arp
- - show vlan
- - show power

ACRONYMS:

- MAC
- MDF
- MDIX
- MFA
- MIB
- MPO
- MTBF
- MTTR
- MTU
- MX
- NAC
- NAS
- NAT
- NFV
- NIC
- NS
- NTP
- NTS

- OS
- OSPF
- OSI
- OT
- PaaS
- PAT
- PCI DSS
- PDU
- PKI
- PoE
- PSK
- PTP
- PTR
- QoS
- QSFP
- RADIUS
- RDP
- RFID
- RIP
- RJ

- RPO
- RSTP
- RTO
- RX
- SaaS
- SAML
- SAN
- SASE
- SC
- SCADA
- SDN
- SD-WAN
- SFP
- SFTP
- SIP
- SIEM
- SLA
- SLAAC
- SMB
- SMTP
- SMTPS

- SNMP
- SOA
- SQL
- SSE
- SSH
- SSID
- SSL
- SSO
- ST
- STP
- SVI
- TACAS+
- TCP
- TFTP
- TTL
- TX
- TXT
- UDP
- UPS
- URL

- USB
- UTM
- UTP
- VIP
- VLAN
- VLSM
- VolP
- VPC
- VPN
- WAN
- WPA Wi-Fi
- WPS Wi-Fi
- VXLAN
- ZTA